Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38309329

RESUMEN

Electroencephalogram (EEG) microstates, which represent quasi-stable patterns of scalp topography, are a promising tool that has the temporal resolution to study atypical spatial and temporal networks in autism spectrum disorder (ASD). While current literature suggests microstates are atypical in ASD, their clinical utility, i.e., relationship with the core behavioural characteristics of ASD, is not fully understood. The aim of this study was to examine microstate parameters in ASD, and examine the relationship between these parameters and core behavioural characteristics in ASD. We compared duration, occurrence, coverage, global explained variance percentage, global field power and spatial correlation of EEG microstates between autistic and neurotypical (NT) adults. Modified k-means cluster analysis was used on eyes-closed, resting state EEG from 30 ASD (10 females, 28.97 ± 9.34 years) and 30 age-equated NT (13 females, 29.33 ± 8.88 years) adults. Five optimal microstates, A to E, were selected to best represent the data. Five microstate maps explaining 80.44% of the NT and 78.44% of the ASD data were found. The ASD group was found to have atypical parameters of microstate A, C, D, and E. Of note, all parameters of microstate C in the ASD group were found to be significantly less than NT. While parameters of microstate D, and E were also found to significantly correlate with subscales of the Ritvo Autism Asperger Diagnostic Scale - Revised (RAADS-R), these findings did not survive a Bonferroni Correction. These findings, in combination with previous findings, highlight the potential clinical utility of EEG microstates and indicate their potential value as a neurophysiologic marker that can be further studied.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Adulto , Femenino , Humanos , Adulto Joven , Encéfalo/fisiología , Trastorno Autístico/diagnóstico , Trastorno del Espectro Autista/diagnóstico , Electroencefalografía , Neurofisiología
2.
Hum Brain Mapp ; 44(18): 6484-6498, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37873867

RESUMEN

Electroencephalographic (EEG) microstates can provide a unique window into the temporal dynamics of large-scale brain networks across brief (millisecond) timescales. Here, we analysed fundamental temporal features of microstates extracted from the broadband EEG signal in a large (N = 139) cohort of children spanning early-to-middle childhood (4-12 years of age). Linear regression models were used to examine if participants' age and biological sex could predict the temporal parameters GEV, duration, coverage, and occurrence, for five microstate classes (A-E) across both eyes-closed and eyes-open resting-state recordings. We further explored associations between these microstate parameters and posterior alpha power after removal of the 1/f-like aperiodic signal. The microstates obtained from our neurodevelopmental EEG recordings broadly replicated the four canonical microstate classes (A to D) frequently reported in adults, with the addition of the more recently established microstate class E. Biological sex served as a significant predictor in the regression models for four of the five microstate classes (A, C, D, and E). In addition, duration and occurrence for microstate E were both found to be positively associated with age for the eyes-open recordings, while the temporal parameters of microstates C and E both exhibited associations with alpha band spectral power. Together, these findings highlight the influence of age and sex on large-scale functional brain networks during early-to-middle childhood, extending understanding of neural dynamics across this important period for brain development.


Asunto(s)
Encéfalo , Electroencefalografía , Adulto , Humanos , Niño , Encéfalo/diagnóstico por imagen , Mapeo Encefálico , Ojo , Modelos Lineales
3.
Artículo en Inglés | MEDLINE | ID: mdl-36574922

RESUMEN

There are growing application of machine learning models to study the intricacies of non-linear and non-stationary characteristics of electroencephalography (EEG) and magnetoencephalography (MEG) data in neurobiologically complex and heterogeneous conditions such as autism spectrum disorder (ASD). Such tools have potential diagnostic applications, and given the highly heterogeneous presentation of ASD, might prove fruitful in early detection and therefore could facilitate very early intervention. We conducted a systematic review (PROSPERO ID#CRD42021257438) by searching PubMed, EMBASE, and PsychINFO for machine learning approaches for EEG and MEG analyses in ASD. Thirty-nine studies were identified, of which the majority (18) used support vector machines for classification; other successful methods included deep learning. Thirty-seven studies were found to employ EEG and two were found to employ MEG. This systematic review indicate that machine learning methods can be used to classify ASD, predict ASD diagnosis in high-risk infants as early as 3 months of age, predict ASD symptom severity, and classify states of cognition in ASD with high accuracy. Replication studies testing validity, reproducibility and generalizability in tandem with randomized controlled trials in ASD populations will likely benefit the field.


Asunto(s)
Trastorno del Espectro Autista , Magnetoencefalografía , Lactante , Humanos , Trastorno del Espectro Autista/diagnóstico , Reproducibilidad de los Resultados , Electroencefalografía , Aprendizaje Automático
4.
Front Psychiatry ; 13: 988939, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36532178

RESUMEN

Atypical spatial organization and temporal characteristics, found via resting state electroencephalography (EEG) microstate analysis, have been associated with psychiatric disorders but these temporal and spatial parameters are less known in autism spectrum disorder (ASD). EEG microstates reflect a short time period of stable scalp potential topography. These canonical microstates (i.e., A, B, C, and D) and more are identified by their unique topographic map, mean duration, fraction of time covered, frequency of occurrence and global explained variance percentage; a measure of how well topographical maps represent EEG data. We reviewed the current literature for resting state microstate analysis in ASD and identified eight publications. This current review indicates there is significant alterations in microstate parameters in ASD populations as compared to typically developing (TD) populations. Microstate parameters were also found to change in relation to specific cognitive processes. However, as microstate parameters are found to be changed by cognitive states, the differently acquired data (e.g., eyes closed or open) resting state EEG are likely to produce disparate results. We also review the current understanding of EEG sources of microstates and the underlying brain networks.

5.
Neurosci Biobehav Rev ; 138: 104690, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35569580

RESUMEN

Cross-frequency coupling (CFC), an electrophysiologically derived measure of oscillatory coupling in the brain, is believed to play a critical role in neuronal computation, learning and communication. It has received much recent attention in the study of both health and disease. We searched for literature that studied CFC during resting state and task-related activities during electroencephalography and magnetoencephalography in psychiatric disorders. Thirty-eight studies were identified, which included attention-deficit hyperactivity disorder, Alzheimer's dementia, autism spectrum disorder, bipolar disorder, depression, obsessive compulsive disorder, social anxiety disorder and schizophrenia. The systematic review was registered with PROSPERO (ID#CRD42021224188). The current review indicates measurable differences exist between CFC in disease states vs. healthy controls. There was variance in CFC at different regions of the brain within the same psychiatric disorders, perhaps this could be explained by the mechanisms and functionality of CFC. There was heterogeneity in methodologies used, which may lead to spurious CFC analyses. Going forward, standardized methodologies need to be established and utilized in further research to understand the neuropathophysiology associated with psychiatric disorders.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Obsesivo Compulsivo , Encéfalo/fisiología , Electroencefalografía/métodos , Humanos , Neuronas/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...